КОЛИЧЕСТВО И СЧЕТ
Главная страница =>библиотека=>оглавление
МЕТОДИКА ФОРМИРОВАНИЯ У ДЕТЕЙ ЭЛЕМЕНТАРНЫХ МАТЕМАТИЧЕСКИХ ПРЕДСТАВЛЕНИЙ
Примерные задания и вопросы: «Сколько здесь больших матрешек? Отсчитай сколько же маленьких матрешек. Узнай, каких квадратов больше: синих или красных. (На столе беспорядочно лежат 5 больших синих квадратов и 6 маленьких красных.) Узнай, каких кубиков больше: желтых или зеленых». (Н? столе стоят 2 ряда кубиков; 6 желтых стоят с большими интервалами один от другого, а 7 синих — вплотную друг к другу
Проверка подскажет, в какой мере дети овладели счетам и на какие вопросы следует обратить особое внимание. Аналогичную проверку можно повторить спустя 2—3 месяца, для того чтобы выявить продвижение детей в овладении знаниями.
Образование чисел. На первых занятиях целесообразно напомнить детям, как образуются числа второго пятка . На одном занятии последовательно рассматривают образование двух чисел и производят сравнение их друг с другом (6 — из 5 и 1; 6 без 1 равно 5; 7 — из 6 и 1; 7 без 1 равно бит. д.). Это помогает детям усвоить общий принцип образования последующего числа добавлением единицы к предыдущему, а также получения предыдущего числа удалением единицы из последующего (6 — 1 = 5). Последнее особенно важно, потому что детей значительно больше затрудняет получение меньшего числа, а следовательно выделение обратной зависимости.
Как и в старшей группе, сопоставляют не только совокупности разных предметов. Группы предметов одного вида разбивают на подгруппы (подмножества) и сопоставляют друг с другом («Больше высоких или низких елочек?»), группу предметов сопоставляют с ее частью. («Чего больше: красных квадратов или красных и синих квадратов вместе?») Дети должны каждый раз рассказывать, как получено данное число предметов, к какому числу предметов и сколько они добавили или от какого числа и сколько убавили. Чтобы ответы были осмысленными надо варьировать вопросы и побуждать детей по-разному
Если много новых детей и при проверке выяснилось, что они плохо владеют счетом, необходимо показать образование всех чисел в пределах 10.
характеризовать одни и те же отношения («поровну», «столько же», «по 6» и др.).
Каждое занятие, посвященное образованию последующих чисел, полезно начинать с повторения того, как были получены предыдущие числа. С этой целью можно использовать числовую лесенку. Двусторонние кружки синего и красного цвета раскладывают в 10 рядов: в каждом последующем ряду, считая слева (сверху), количество увеличивается на 1 («на 1 кружок больше»), причем дополнительный кружок повернут другой стороной. Числовая лесенка по мере получения последующих чисел постепенно надстраивается. В начале занятия, рассматривая лесенку, дети вспоминают, как были получены предыдущие числа.
В счете и отсчете предметов в пределах 10 дети упражняются в течение всего учебного года. Они должны твердо запомнить порядок следования числительных и уметь правильно соотносить числительные с пересчитываемыми предметами, понимать, что последнее названное при счете число обозначает общее количество предметов совокупности. Если дети допускают ошибки при счете, необходимо показать и разъяснить его действия.
К моменту перехода детей в школу у них должна быть воспитана привычка вести счет и раскладывать предметы слева направо, действуя правой рукой. Но, отвечая на вопрос сколько? дети могут считать предметы в любом направлении: слева направо и справа налево, а также сверху вниз и снизу вверх. Они убеждаются, что считать можно в любом направлении, но при этом важно не пропустить ни одного предмета и ни один предмет не сосчитать дважды.
Независимость числа предметов от их размера и формы расположения. Формирование понятий «поровну», «больше», «меньше», сознательных и прочных навыков счета предполагает использование большого количества разнообразных упражнений и наглядных пособий. Особое внимание уделяют сопоставлению численностей множеств предметов разного размера (длинных и коротких, широких и узких, больших и маленьких), по-разному расположенных и занимающих разную площадь. Дети сопоставляют совокупности предметов, например групп кружков, расположенных разными способами: находят карточки с определенным количеством кружков в соответствии с образцом, но иначе расположенных, образующих другую фигуру; отсчитывают столько же предметов, сколько кружков на карточке, или на 1 больше (меньше) и т. д. Детей побуждают искать способы, как удобнее и быстрее можно сосчитать предметы в зависимости от характера их расположения.
Рассказывая каждый раз о том, сколько каких предметов и как они расположены, дети убеждаются, что количество предметов не зависит от места, которое они занимают, от их размеров и других качественных признаков.
Группировка предметов по разным признакам (образование групп предметов). От сравнения численностей 2 групп предметов, отличающихся каким-либо одним признаком, например размером, переходят к сравнению численностей групп предметов, отличающихся 2, 3 признаками, например размером, формой, расположением и т. д.
Дети упражняются в последовательном выделении признаков предметов («Что это? Для чего нужно? Какой формы? Какого размера? Какого цвета? Сколько?»), в сравнении предметов и объединении их в группы на основе одного из выделенных признаков, в образовании групп. В результате у детей развивается способность к наблюдению, четкость мышления, смекалка. Они учатся выделять признаки, общие для всей группы предметов или лишь для части предметов данной группы, т. е. выделять подгруппы предметов по тому или иному признаку, устанавливать количественные соотношения между ними. Например: «Сколько всего игрушек? Сколько матрешек? Сколько машин? Сколько деревянных игрушек? Сколько металлических? Сколько больших игрушек? Сколько маленьких?»
В заключение воспитатель предлагает придумать вопросы со словом сколько, основываясь на умении выделять признаки объектов и объединять их по общему для данной подгруппы или группы в целом признаку.
Каждый раз перед ребенком ставят вопрос: почему он так думает? Это способствует лучшему осознанию количественных отношений. Упражняясь, дети сначала устанавливают, каких предметов больше, каких — меньше, а затем пересчитывают предметы и сравнивают числа либо сначала определяют количество предметов, попавших в разные подгруппы, а затем устанавливают количественные отношения между ними: «Чего больше, если треугольников 6, а кругов 5?»
У Приемы сопоставления совокупностей предметов. Сравнивая совокупности предметов (выявляя отношения равенства и неравенства), дети осваивают способы практического сопоставления их элементов: наложение, приложение, раскладывание предметов 2 совокупностей парами, использование эквивалентов для сравнения 2 совокупностей, наконец, соединение предметов 2 совокупностей стрелочками. Например, педагог рисует на доске 6 кружков, а справа — 5 овалов и спрашивает: «Каких фигур больше (меньше) и почему? Как проверить? А если не считать?» Кому-либо из детей предлагает каждый кружок соединить стрелочкой с овалом. Выясняет, что 1 кружок оказался лишним, значит, их больше, чем других фигур, 1 овала не хватило, значит, их меньше, чем кружков. «Что надо сделать, чтобы фигур стало поровну?» И т. д. Детям предлагают самим нарисовать указанное число фигур 2 видов и разными способами сравнить их количество.
При сравнении численностей множеств каждый раз устанавливают, каких предметов больше и каких меньше, так как важно, чтобы отношения «больше» и «меньше» постоянно выступали II связи друг с другом (если в одном ряду 1 лишний предмет, то и другом — соответственно 1 не хватает). Уравнивание производя! всегда 2 способами: либо убирают предмет из большей группы, либо добавляют в меньшую группу.
Широко используют приемы, позволяющие подчеркнуть значение способов практического сопоставления элементов совокупностей для выявления количественных отношений. Например, воспитатель ставит 7 елочек. Дети их считают. Педагог предлагает им закрыть глаза. Под каждой елочкой ставит 1 грибок, а затем просит детей открыть глаза и, не считая грибки, сказать, сколько их. Ребята объясняют, как они догадались, что грибков 7. Можно давать аналогичные задания, но помещать во вторую группу на 1 предмет больше или меньше.
Наконец, предметы второй группы могут вообще не предъявлять. Например, педагог рассказывает: «Вечером в цирке выступает укротитель с группой дрессированных тигров, рабочие приготовили для каждого тигра по 1 тумбе (ставит кубы). Сколько тигров будет участвовать в представлении?»
Характер использования способов сопоставления постепенно меняют. Вначале они помогают в наглядной форме выявить количественные отношения, показать значение чисел и раскрыть связи и отношения, существующие между ними. Позднее, когда средством установления количественных отношений («поровну», «больше», «меньше») все более становится счет и сравнение чисел, способы практического сопоставления иснользуют как средство проверки, доказательства установленных отношений.
Важно, чтобы дети научились самостоятельно прибегать к способам практического сопоставления групп предметов, доказывая правильность своих суждений о связях и отношениях между смежными числами. Например, ребенок говорит: «7 больше 6 на 1, а 6 меньше 7 на 1. Чтобы это проверить, возьмем кубики и кирпичики». Он расставляет игрушки в 2 ряда, наглядно показывает и разъясняет: «Кубиков больше, 1 лишний, а кирпичиков меньше, только 6, 1 не хватает значит, 7 больше, чем 6, на 1, а 6 меньше, чем 7, на 1»
Равенство и неравенство численностей множеств. Дети должны убедиться в том, что любые совокупности, содержащие одно и то же количество элементов, обозначаются одним и тем же числом. Упражнения в установлении равенства между численностями совокупностей разных либо однородных предметов, отличающихся качественными признаками, выполняют по-разному (см. с. 99—100).
Дети должны понять, что любых предметов может быть поровну: и по 3, и по 4, и по 5, и по 6.
Полезны упражнения, требующие опосредствованного уравнивания числа элементов 2—3 совокупностей, когда детям предлагают сразу принести недостающее количество предметов, например столько флажков и барабанов, чтобы всем пионерам хватило, столько лент, чтобы можно было завязать банты всем мишкам.
Для усвоения количественных отношений наряду с упражнениями в установлении равенства численностей множеств используют упражнения и в нарушении равенства, например: «Сделай так, чтобы треугольников стало больше, чем квадратов. Докажи, что их стало больше. Что нужно сделать, чтобы кукол стало меньше, чем мишек? Сколько их будет? Почему?»
Л.С. Метлина. Математика в детском саду. М.:Просвещение, 1984.
Смотрите еще:
- ФОРМА
- ОРИЕНТИРОВКА В ПРОСТРАНСТВЕ
- СОСТАВ ЧИСЛА ИЗ ЕДИНИЦ
- КОЛИЧЕСТВО И СЧЕТ
- ОБУЧЕНИЕ ДЕТЕЙ ФОРМУЛИРОВКЕ АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ
- ВОСПИТАНИЕ НАВЫКОВ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ
- ОРИЕНТИРОВКА В ПРОСТРАНСТВЕ
- СЧЕТ С УЧАСТИЕМ РАЗНЫХ АНАЛИЗАТОРОВ
- Примерные конспекты занятий по математике в подготовительной группе
- ДЕЛЕНИЕ ЦЕЛОГО НА ЧАСТИ