ОБУЧЕНИЕ ДЕТЕЙ РЕШЕНИЮ ЗАДАЧ
Главная страница =>библиотека=>оглавление
Предшествующая работа позволяет детям перейти к новому виду деятельности — вычислениям.Обучение сложению и вычитанию — одна из основных задач математической работы в первом классе. В детском саду проводят главным образом подготовительную работу. Дети осваивают вычисление, составляя и решая арифметические задачи. Работа эта позволяет понять смысл арифметических действий и сознательно к ним прибегать, устанавливать взаимосвязи между величинами.
Дошкольники решают простые задачи в одно действие, главным образом прямые, т. е. такие, где арифметическое действие (прибавить, вычесть) прямо вытекает из практического действия с предметами (добавили — стало больше, убавили — стало меньше). Это задачи на нахождение суммы и остатка. Детей знакомят со случаями сложения, когда к большему числу прибавляют меньшее, учат прибавлять и вычитать сначала число 1, потом число 2, а затем число 3. (Числовой материал используют в объеме первого десятка.)
Этапы обучения решению задач. Обучение вычислительной деятельности и знакомство дошкольников с задачами осуществляют поэтапно, давая детям знания небольшими дозами.
На первом этапе необходимо научить детей составлять задачи и помочь им осознать, что в содержании задач находит отражение окружающая жизнь.
Они усваивают структуру задачи, выделяют условие и вопрос, осознают особое значение числовых данных. Помимо этого, они учатся решать задачи, сознательно выбирать и формулировать действие сложения или вычитания, вникать в смысл того, к каким количественным изменениям приводят практические действия с предметами, о которых говорится в задаче (больше или меньше стало или осталось).
Дети учатся давать полный, развернутый ответ на вопрос задачи. Числовой материал в этот период либо ограничивают первым пятком, либо в пределах второго пятка прибавляют или вычитают 1.
На втором этапе дети учатся не только обоснованно выбирать действие сложения или вычитания, но и правильно пользоваться приемами присчитывания и отсчитывания по 1, прибавляя или вычитая сначала число 2, а позже 3.
Обучение детей составлению задач. Для того чтобы дети научились выделять числовые данные задачи, практические действия и понимать смысл количественных изменений, к которым они приводят, необходима полная предметная наглядность. На первом занятии воспитатель дает детям общее представление о задаче, учит практически составлять условие и ставить вопрос к ней. Основное внимание уделяют пониманию детьми смысла количественных изменений, к которым приводят те или иные действия с предметами. Соединили 2 группы предметов: к одной группе добавили другую — становится больше предметов, чем было. Отделили столько-то предметов, убавили — предметов стало меньше, чем было.
Первые 1—2 задачи составляет воспитатель, описывая в них с§ те действия, которые дети выполнили по его указанию: «Сережа
Поставил на стол 3 матрешки. Вера принесла еще 1 матрешку. Сколько всего матрешек принесли Вера и Сережа?»
Важно сразу привлечь внимание детей к количественным отношениям между числовыми данными задачи: «Сколько матрешек Сережа поставил на стол? Сколько матрешек принесла Вера? Больше или меньше стало матрешек после того, как Вера принесла еще 1? Сколько всего матрешек принесли Вера и Сережа? Больше или меньше у нас получилось матрешек, чем поставил Сережа? Почему?»
Воспитатель говорит: «Я составила задачу, а вы ее решили. Теперь мы будем учиться составлять и решать задачи». Вспоминают задачу, которую дети только что решили. Воспитатель объясняет, как составлена задача: «Сначала рассказано о том, сколько матрешек поставил на стол Сережа и сколько матрешек принесла Вера, а затем поставлен вопрос, сколько всего матрешек принесли Сережа и Вера. Вы ответили, что Сережа и Вера принесли 4 матрешки. Решив задачу, вы правильно ответили на вопрос».
Аналогичным образом составляют еще одну задачу. Важно подчеркнуть необходимость давать точный, развернутый ответ на вопрос задачи. Если ребенок упускает что-либо, например говорит лишь о количестве предметов («4 матрешки»), воспитатель замечает, что непонятно, о каких матрешках идет речь.
Полезно давать задания одновременно всем детям, предлагать придумать задачу о том, что они сделали. Это создает лучшие условия для установления количественных отношений между числовыми данными. Воспитатель предлагает: «На верхнюю полоску карточки положите 5 кружков, а на нижнюю — 1 кружок. Расскажите о том, что вы сделали». Воспитатель следит за тем, чтобы рассказ получился кратким, связным, конкретным. Он указывает, что такой рассказ — еще не задача: «Это то, что мы знаем. А что можно узнать? О чем спросить?» Как правило, дети не чувствуют необходимости в постановке вопроса и часто сразу дают ответ: «Всего я положил 6 кружков». Воспитатель напоминает, что нужно было просто рассказать, что сделали, и подумать, какой вопрос задать.
Можно использовать и такой прием. Воспитатель предлагает детям, сидящим с правей стороны, выполнить какое-нибудь действие, например к 6 кружкам придвинуть 1. Детей, сидящих слева, просит подумать, какой вопрос можно задать товарищу, находящемуся рядом. Каждый раз педагог выделяет числовые данные, привлекает внимание детей к тем количественным изменениям, которые произошли в результате практических действий, описанных в условии задачи.
Побуждая детей устанавливать связи и отношения между числами, их учат предвосхищать результат. После того как дети дадут ответ на вопрос задачи, воспитатель спрашивает: «Больше или меньше стало?» Сравнивает числовые данные условия задачи с числом, полученным в результате действия.
На первых двух занятиях дети должны научиться элементарно анализировать задачи.
Знакомство со структурой задачи. Со структурой задачи дети знакомятся на втором или третьем занятии: они узнают, что в задаче есть условие и вопрос, особо подчеркивается наличие в условии задачи не менее 2 чисел.
Воспитатель, обращаясь к детям, говорит: «Я сейчас расскажу вам, о чем задача, а вы будете показывать все то, о чем я буду сообщать. Слева на карточку дети положили 6 флажков, а справа — 1 флажок. Сколько всего флажков положили на карточку? Мы составили задачу. Давайте повторим ее и отделим то, что мы знаем, от того, что мы не знаем. Что же мы знаем?» Ребята отвечают, что 6 флажков у них лежат слева и 1 флажок справа. «Это мы знаем. Это условие задачи,— объясняет педагог.— Что же в задаче спрашивается?» «Сколько всего флажков на карточке», — отвечают дети. «Этого мы не знаем. Это то, что надо узнать. Это вопрос задачи. В каждой задаче есть условие и вопрос. О каких числах говорится в нашей задаче? Какой вопрос вы поставили? Повторим нашу задачу». Воспитатель предлагает одному ребенку повторить условие задачи, а другому — поставить вопрос, уточняет, из каких 2 частей состоит задача. Так составляют 2—3 задачи. Каждый раз воспитатель предлагает расчленить задачу на условие и вопрос. Иногда он сам сообщает детям условие и спрашивает, все ли сказано в задаче, чего не хватает. Можно повторить задачу по ролям: один ребенок рассказывает условие, другой ставит вопрос, третий дает ответ на вопрос задачи.
Педагог, участвуя в этой игре, меняется ролями с детьми: одни дети придумывают условие задачи, другие ставят вопрос, а воспитатель дает ответ на вопрос задачи, и наоборот.
Важно раскрыть арифметическое значение вопроса задачи. С этой целью, рассматривая очередную задачу, воспитатель специально сосредоточивает внимание ребят на характере вопроса. Например, дети рассказали условие задачи: «У Оли было 4 шара, а Дима подарил ей еще 1 шар. Это условие задачи, это то, что мы знаем. А что нового можно узнать о шарах? Оказывается, можно узнать много: и какого цвета шары, большие они или маленькие. Но главное, надо узнать общее их количество. Так какой вопрос надо поставить к задаче?» Дети ставят вопрос об общем количестве шаров. Вопрос задачи обычно начинается с вопроса сколько? Педагог иногда умышленно спрашивает о цвете, размере, местоположении предмета. Дети замечают ошибку и поправляют воспитателя.
Необходимо подчеркнуть значение числовых данных задачи. С этой целью рекомендуется такой прием: рассказывая об условии задачи, воспитатель опускает одно из чисел или оба числа и спрашивает: «Можно ли решить задачу?» Дети практически убеждаются в том, что в условии задачи должно быть не нее 2 чисел.
После того как дети научатся составлять задачи без наглядного материала, для закрепления знаний о структуре задачи полезно сравнить ее с рассказом и загадкой: «Папа подарил Ване несколько красивых камешков, и брат поделился с ней своими камешками. Что я вам рассказала? Есть ли здесь числа? Есть ли здесь вопрос?» «Папа подарил Тане 8 камешков, а брат дал ей еще 1 камешек. Сколько всего камешков подарили Тане? Что это? Как вы теперь догадались, это задача. Чем отличается она от рассказа?»
Дети объясняют: «В рассказе не сказано, сколько камешков папа подарил Тане и сколько камешков ей дал брат. А в задаче сказано, что папа подарил Тане 8 камешков, а брат дал ей еще 1 камешек. В задаче есть 2 числа. В рассказе нет ни одного числа и нет вопроса. В задаче есть вопрос». — «Можем ли мы решить эту задачу? Что мы знаем?» Хорошо сравнить задачи с загадками. Подбирают загадки, в которых указаны числа: Один говорит, двое глядят, а двое слушают (рот, глаза, уши); Четыре братца под одной крышей живут (стол). Вместе с детьми педагог обсуждает, какие вопросы здесь можно поставить: «Что это такое? Сколько ножек у стола?» И т. п. Выясняют, что в загадке надо догадаться, о каком предмете говорится, а в задаче хотят узнать о количестве, сколько получится или останется предметов.
Сравнение задачи с загадкой позволяет подчеркнуть арифметический смысл вопроса задачи. Полезно научить детей пользоваться общим способом, с помощью которого можно отличить задачу от рассказа, загадки. Провести анализ текста можно по следующему плану: «Есть ли здесь числа? Сколько здесь чисел? Есть ли здесь вопрос?»
В заключение детям предлагают преобразовать загадку, рассказ и т. д. в задачу, подумать, что для этого надо сделать.
На данном этапе обучения на первом занятии дети решают задачи на сложение, а на последующих — на сложение и вычитание, причем задачи на сложение и вычитание чередуют. Ответ находят, опираясь на понимание связей и отношений между смежными числами.
Задачи-драматизации. В зависимости от того, какой наглядный материал используется, различаются следующие задачи: задачи-драматизации, задачи-иллюстрации и устные задачи, которые дети решают без опоры на наглядный материал . Большое внимание уделяют задачам-драматизациям. В них отражаются действия, которые дети наблюдают, а чаще всего непосредственно сами производят. Важно, чтобы здесь наглядно были представлены числовые данные, а не ответ на вопрос.
Первоклассники подчас не могут решить задачу лишь потому, что не понимают смысла слов, обозначающих то или иное действие: истратил, поделился, подарил и др. Поэтому в подготовительной к школе группе следует специально уделить внимание раскрытию смыслового значения слов, обозначающих те или иные действия. С этой целью необходимо учитывать, какие практические действия кладут в основу задачи. При этом целесообразно сопоставлять задачи на нахождение суммы и остатка, предполагающие действия противоположного значения: пришел — ушел, подошли— отошли, взял — отдал, подняли — опустили, принесли — унесли, прилетели — улетели.
Наиболее важно сопоставлять однокоренные слова противоположного значения, смысл которых детям трудно уловить: дал (он) — дали (ему), подарил (он) — подарили (ему), взял (он) — взяли (у него). В ходе драматизации действия называют.
От занятия к занятию знания детей о действиях с предметами расширяются и уточняются, накапливается представление о том, что в задачах всегда отражается то, что происходит в жизни.
Задачи-иллюстрации. Дальнейшему развитию самостоятельности и накоплению опыта установления количественных отношений в различных жизненных ситуациях служат задачи-иллюстрации по картинкам и по игрушкам.
Вначале детям демонстрируют картинки, на которых представлены и тема, и сюжет, и числовые данные. Первую задачу по картинке воспитатель составляет сам. Он учит детей рассматривать рисунок, выделять числовые данные и те жизненные действия, которые привели к изменению количественных отношений. Например, на картинке нарисован мальчик с 5 шарами, 1 шар он отдает девочке. Рассматривая картинку, воспитатель спрашивает: «Что здесь нарисовано? Что держит мальчик? Сколько у него шаров? Что он делает? Если он отдаст шар девочке, больше или меньше у него останется шаров? Что мы знаем? Сопоставьте условие задачи. О чем можно спросить?»
Вначале педагог помогает детям наводящими вопросами, затем дает им лишь план: «Что нарисовано? Сколько? Что изменилось? Больше или меньше станет?» В дальнейшем дети самостоятельно рассматривают картинки и составляют задачи.
Для составления задач можно использовать рисунки, на которых представлены общий фон (лес, река) или такие предметы, как ваза, корзина, ель, яблоня. На рисунках сделаны разрезы, в которые вставляют плоские цветные изображения предметов: шишек, яблок, шаров, груш, огурцов, лодок, домов, деревьев и пр. Воспитатель вставляет в разрезы изображения предметов так, чтобы наглядно были представлены числовые данные.
Таким образом, в данном случае заранее обусловлены лишь а и числовые данные задачи, сюжет ее дети могут варьировать.
Меняя числовые данные, воспитатель побуждает детей придумывать задачи на нахождение суммы и остатка разного содержания на одну и ту же тему, составлять задачи по любой сюжетной картинке, используемой для обучения рассказыванию.
Еще больший простор для развития воображения и самостоятельности дает составление задач об игрушках. Воспитатель побуждает детей припоминать разные факты из жизни, которые они видели или о которых им читали. Он дает образец — придумывает, несколько вариантов задач на одну тему. При этом следит за тем, чтобы дети составляли задачи разнообразного содержания на одну тему (не похожие одна на другую) и достоверно передавали жизненные факты, поощряет самостоятельность, творчество. Дети выбирают наиболее интересные задачи и решают их.
Материалом для составления задач могут быть окружающая обстановка, знакомые предметы. Например: «В групповой комнате б столов стоят посередине, а 1 стол — у стены. Сколько столов в группе?», «Дежурные поставили на детские столы 8 банок с водой, а 1 банку — на стол воспитателя. Сколько всего банок поставили дежурные?»
Устные задачи. Предшествующая работа создает условия для перехода к составлению задач без опоры на наглядный материал (устные задачи). Спешить с составлением устных задач не следует. Дети, как правило, легко схватывая схему задачи, начинают ей подражать и подчас искажают правду жизни, не понимая логики количественных отношений, которые являются основой задачи.
После того как будет хорошо освоен смысл действий, которые надо произвести, ребята смогут решать и такие задачи, которые основаны на их опыте. Задачи разнообразного содержания позволяют уточнить и закрепить знания об окружающем, учат их устанавливать связи и отношения, т е. воспринимать явления в их взаимосвязях и взаимозависимостях
Первые устные задачи дает детям воспитатель. «В графине было 5 стаканов воды, Сережа выпил 1 стакан Сколько воды осталось в графине?», «К празднику строители сдали 5 домов на одной стороне улицы и. 1 дом на другой. Сколько домов сдали строители к празднику?», «Пионеры посадили у школы 6 яблонь и 1 грушу. Сколько всего фруктовых деревьев посадили пионеры?» В отдельных случаях в качестве переходной ступеньки к решению устных задач может быть использован такой прием: воспитатель рассказывает детям задачу и предлагает им изобразить условие с помощью кружков, квадратов или отложить косточки на счетах.
Детей надо учить запоминать задачу с первого раза и повторять ее, не ожидая дополнительных вопросов. Обучая детей составлению задач, воспитатель обусловливает объем числового материала. Необходимо следить за тем, чтобы в задачах дети правильно отражали жизненные связи, зависимости» Каждый раз следует обсуждать, бывает ли так на самом деле, как придумал кто-либо из детей.
Л.С. Метлина. Математика в детском саду. М.:Просвещение, 1984.